The material-balance equation is the simplest expression of the conservation of mass in a reservoir. The equation mathematically defines the different producing mechanisms and effectively relates the reservoir fluid and rock expansion to the subsequent fluid withdrawal.

The applicable equation for initially saturated volatile- and black-oil reservoirs is^{[1]}^{[2]}^{[3]}^{[4]}

.(1)

where:

*G*_{fgi},*N*_{foi}, and*W*are the initial free gas, oil, and water in place, respectively*G*_{p},*N*_{p}, and*W*_{p}are the cumulative produced gas, oil, and water, respectively*G*_{I}and*W*_{I}are the cumulative настоящий самолет.gas and water respectively

*E*_{g},*E*_{o},*E*_{w}, and*E*_{f}are the gas, oil, water, and rock (formation) expansivities

Most of the equations regarding primary drive mechanisms for oil reservoirs apply to any consistent set of units.

A few 4фото1слово крокодил смотрит в лупу, however, are written assuming English or customary units. Those equations are expressed in SI units:

.(2)

.(3)

.(4)

.(5)

.(6)

.(7)

and .(8)

*N*_{foi} and *G*_{fgi} are related to the total original oil in place (OOIP) and original gas in place (OGIP), *N* and *G*, according to *N* = *N*_{foi} + *G*_{fgi}*R*_{vi} and *G* = *G*_{fgi} + *N*_{foi}*R*_{si}.

The expansivities are defined as

.(9)

.(10)

.(11)

and , where B to and B настоящий самолет.

are the two-phase formation volume factors (FVFs),

.(12)

and .(13)

The rock expansivity is obtained from direct measurement.

See compaction driving oil reservoir for a greater discussion.

Physically, the two-phase FVF is the total hydrocarbon volume per unit volume of oil or gas at standard conditions. The настоящий самолет. FVF mimics the observations noted during a constant-composition expansion test. For instance, the two-phase oil FVF is the total hydrocarbon (oil + gas) volume of a saturated oil sample per unit volume of oil at standard conditions. In contrast, the two-phase gas FVF is the total hydrocarbon volume of a saturated gas sample per unit volume of gas at standard conditions.

*B*_{to} and *B*_{tg} typically are expressed in units of RB/stock tank barrel (STB) and RB/Mscf, respectively.

- For undersaturated oils, the two-phase oil FVF is equal to the oil FVF
- For undersaturated gases, the two-phase gas FVF is equal to the gas FVF.

**Eqs. 12** бумажный самолкт **13** account for volatilized oil in the equilibrium gas phase. If volatilized oil is negligible, these equations are simplified. For instance, *B*_{to} = *B*_{o} + *B*_{g} (*R*_{si} – *R*_{s}) and *B*_{tg} = *B*_{g}.

These equations apply for black oils. **Eq.11** ignores dissolved gas in the aqueous phase.

**Eq.1** broadly states that net expansion equals net withdrawal.

More 4фото1слово крокодил смотрит в лупу, it shows the different forms of expansion and withdrawal. The бумажный самолкт forms of expansion such as gas expansion are responsible for the different producing mechanisms.

For the бумажный самолкт of simplicity, **Eq.1** is often written in the abbreviated form of

.(14)

where:

*F*настоящий самолет. total net fluid withdrawal or production*E*_{gwf}= composite gas expansivity*E*_{owf}= composite oil expansivities

*F*, *E*_{gwf}, and настоящий самолет.

are defined in

.(15)

.(16)

and .(17)

The composite expansivities include the connate-water and rock expansivities.

**Eq.15** includes *G*_{ps}, which is the cumulative produced sales gas and is defined as (*G*_{p} – *G*_{I}).

*F*is expressed in reservoir volume units (e.g., RB or res m^{3})*E*_{gwf}is expressed in reservoir volume units per standard unit volume of gas (e.g., RB/scf)*E*_{owf}is 4фото1слово крокодил смотрит в лупу in reservoir volume units per standard unit volume of oil (e.g., RB/STB)

For strictly undersaturated oil reservoirs, no free gas exists (i.e., *G*_{fgi} = 0) and the initial free oil in place is equal to the OOIP (i.e., *N*_{foi} = *N*) and **Eqs.114**, and **15** simplify, respectively, to^{[1]}^{[4]}^{[5]}

.(18)

.(19)

.(20)

**Eqs.18** through **20** ignore gas reinjection.

The бумажный самолкт balance equation also helps explain most oil-recovery strategies. If the material-balance equation is solved for the produced fraction of the original free oil in place, then

.(21)

**Eq.21** succinctly shows that oil recovery increases with:

It also shows that oil recovery increases by minimizing water production (*W*_{p}).

The material balance equation and its many different forms have many uses including:

- Confirming the producing настоящий самолет.
the OOIP and OGIP

- Estimating gas cap sizes
- Estimating water influx настоящий самолет. water influx model parameters
- Estimating producing indices

B_{g} | = | gas FVF, RB/scf | |

B_{o} | = | oil FVF, Настоящий самолет. | |

B_{tg} | = | two-phase gas FVF, RB/scf | |

B_{to} | = | two-phase oil FVF, RB/STB | |

B_{tw} | = | two-phase water/gas FVF, RB/STB | |

B_{w} | = | water FVF, RB/STB | |

c_{f} | = | rock compressibility, Lt^{2}/m, 1/psi | |

c_{t} | = | total aquifer настоящий самолет., Lt^{2}/m, 1/psi | |

E_{f} | = | rock (formation) expansivity | |

E_{g} | = | gas expansivity, RB/scf | |

E_{gw} | = | expansivity for McEwen method, RB/scf | |

E_{gwf} | 4фото1слово крокодил смотрит в лупу | composite gas/water/rock FVF, RB/scf | |

E_{o} | = | oil expansivity, RB/STB | |

E_{ow} | настоящий самолет. | expansivity for McEwen method, RB/STB | |

E_{owf} | = | composite oil/water/rock FVF, RB/STB | |

E_{w} | = настоящий самолет. water expansivity, RB/STB | ||

F | = | total fluid withdrawal, L^{3}, RB | |

G | = | total original gas in place, L^{3}, scf | |

G_{fgi} | = | настоящий самолет.
free gas in place, L | cumulative gas injected, L^{3}, scf |

G_{p} | = | cumulative produced gas, L^{3}, scf | |

h | = | pay thickness, L, ft | |

k | = | permeability, L^{2}, md | |

k_{a} | = | aquifer permeability, L^{2}, md | |

k_{H} | = | horizontal permeability, L^{2}, md | |

k_{t} | = | time constant, 1/t, 1/years | |

k_{v} | = | vertical permeability, L^{2}, md | |

L_{a} | = | aquifer length, L, ft | |

N | = | total original oil in place, L^{3}, STB | |

N_{foi} | = | initial free oil in place, L^{3}, STB | |

N_{g} | = | dimensionless gravity number | |

N_{p} | = | cumulative produced oil, L^{3}, STB | |

p | = | pressure, m/Lt^{2}, psi | |

p_{e} | = | pressure at drainage radius, m/Lt^{2}, psi | |

p_{w} | = | wellbore pressure, m/Lt^{2}, psi | |

q | = | producing rate at reservoir conditions (RB/D) or surface conditions (STB/D),v L^{3}/t | |

q_{c} | = | critical coning rate, STB/D, L^{3}/t | |

q_{Dc} | = | dimensionless critical coning rate | |

r_{e} | = | reservoir drainage radius | |

r_{w} | = | wellbore radius, L, ft | |

R | = | instantaneous producing GOR, scf/STB | |

R_{s} | = | dissolved GOR, scf/STB | |

R_{sw} | = | dissolved-gas/water ratio, scf/STB бумажный самолкт = | volatilized-oil/gas ratio, STB/MMscf |

S_{wi} | = | настоящий самолет.
water saturation, fraction | |

t | = | time, t, years | |

t_{max} | = | maximum time, t, years | |

t_{D} | = | dimensionless time | |

t_{Dmax} | = | maximum dimensionless time | |

U | = | aquifer constant, L^{4}t^{2}/m, RB/psi | |

V_{pi} | = | initial reservoir PV, L^{3}, RB | |

w | = | reservoir width, L, ft | |

W | = | initial water in place, L^{3}, STB | |

W_{D} | = | dimensionless cumulative water influx | |

W_{e} | = | cumulative water influx, L^{3}, RB | |

W_{I} | = | cumulative injected water, L^{3}, STB | |

W_{p} | = | cumulative produced water, L^{3}, STB | |

Δp | = | difference of time-averaged pressure, m/Lt^{2}, psi | |

Δρ | = | density difference, m/L^{3}, lbm/ft^{3} and g/cm^{3} | |

μ_{g} | = | gas viscosity, m/Lt, cp | |

μ_{o} | = | oil viscosity, m/Lt, cp | |

μ_{w} | = | water 4фото1слово крокодил смотрит в лупу, m/Lt, cp |

- ↑
^{1.0}^{1.1}Walsh, M.P.1995. A Generalized Approach to Reservoir Material Balance Calculations. J Can Pet Technol 34 (1). PETSOC-95-01-07. http://dx.doi.org/10.2118/95-01-07

- ↑Walsh, M.P. 1994. New, Improved Equation Solves for Volatile Oil and Condensate Reserves. Oil & Gas J. (22 August): 72.
- ↑Walsh, M.P., Ansah, J., and Raghavan, R. 1994. The New, Generalized Material Balance as an Equation of настоящий самолет. Straight Line: Part 2 - Applications to Saturated and Non-Volumetric Reservoirs.
Presented at the Permian Basin Oil and Gas Recovery Conference, Midland, Texas, 16-18 March 1994.

SPE-27728-MS. http://dx.doi.org/10.2118/27728-MS

- ↑
^{4.0}^{4.1}Walsh, M.P. and Lake, L.W. 2003. A Generalized Approach to Primary Hydrocarbon Recovery. Amsterdam: Elsevier. - ↑Walsh, M.P., Ansah, J., and Raghavan, R. 1994. The New, Generalized Material Balance as an Equation настоящий самолет. a Straight Line: Part 1 - Applications to Undersaturated, Volumetric Reservoirs. Presented at the Permian Basin Oil and Gas Recovery Conference, Midland, Texas, 16-18 March 1994.
Бумажный самолкт. http://dx.doi.org/10.2118/27684-MS

Use this section to list papers in OnePetro that a reader who wants to learn more should definitely read

<a href="https://www.onepetro.org/conference-paper/SPE-105982-MS?sort=&start=0&q=material+balance+in+oil+reservoirs&from_year=&peer_reviewed=&published_between=&fromSearchResults=true&to_year=&rows=10#" alt="https://www.onepetro.org/conference-paper/SPE-105982-MS?sort=&start=0&q=material+balance+in+oil+reservoirs&from_year=&peer_reviewed=&published_between=&fromSearchResults=true&to_year=&rows=10#" title="https://www.onepetro.org/conference-paper/SPE-105982-MS?sort=&start=0&q=material+balance+in+oil+reservoirs&from_year=&peer_reviewed=&published_between=&fromSearchResults=true&to_year=&rows=10#">https://www.onepetro.org/conference-paper/SPE-105982-MS?sort=&start=0&q=material+balance+in+oil+reservoirs&from_year=&peer_reviewed=&published_between=&fromSearchResults=true&to_year=&rows=10#</a>

<a href="https://www.onepetro.org/journal-paper/SPE-17452-PA?sort=&start=0&q=material+balance+in+oil+reservoirs&from_year=&peer_reviewed=&published_between=&fromSearchResults=true&to_year=&rows=10#" alt="https://www.onepetro.org/journal-paper/SPE-17452-PA?sort=&start=0&q=material+balance+in+oil+reservoirs&from_year=&peer_reviewed=&published_between=&fromSearchResults=true&to_year=&rows=10#" title="https://www.onepetro.org/journal-paper/SPE-17452-PA?sort=&start=0&q=material+balance+in+oil+reservoirs&from_year=&peer_reviewed=&published_between=&fromSearchResults=true&to_year=&rows=10#">https://www.onepetro.org/journal-paper/SPE-17452-PA?sort=&start=0&q=material+balance+in+oil+reservoirs&from_year=&peer_reviewed=&published_between=&fromSearchResults=true&to_year=&rows=10#</a>

<a href="https://www.onepetro.org/general/SPE-4920-MS?sort=&start=0&q=material+balance+in+oil+reservoirs&from_year=&peer_reviewed=&published_between=&fromSearchResults=true&to_year=&rows=10#" alt="https://www.onepetro.org/general/SPE-4920-MS?sort=&start=0&q=material+balance+in+oil+reservoirs&from_year=&peer_reviewed=&published_between=&fromSearchResults=true&to_year=&rows=10#" title="https://www.onepetro.org/general/SPE-4920-MS?sort=&start=0&q=material+balance+in+oil+reservoirs&from_year=&peer_reviewed=&published_between=&fromSearchResults=true&to_year=&rows=10#">https://www.onepetro.org/general/SPE-4920-MS?sort=&start=0&q=material+balance+in+oil+reservoirs&from_year=&peer_reviewed=&published_between=&fromSearchResults=true&to_year=&rows=10#</a>

<a настоящий самолет.

alt="https://www.onepetro.org/conference-paper/SPE-172415-MS?sort=&start=0&q=material+balance+in+oil+reservoirs&from_year=&peer_reviewed=&published_between=&fromSearchResults=true&to_year=&rows=10#" title="https://www.onepetro.org/conference-paper/SPE-172415-MS?sort=&start=0&q=material+balance+in+oil+reservoirs&from_year=&peer_reviewed=&published_between=&fromSearchResults=true&to_year=&rows=10#">https://www.onepetro.org/conference-paper/SPE-172415-MS?sort=&start=0&q=material+balance+in+oil+reservoirs&from_year=&peer_reviewed=&published_between=&fromSearchResults=true&to_year=&rows=10#</a>

<a href="https://www.onepetro.org/conference-paper/SPE-62882-MS?sort=&start=0&q=material+balance+in+oil+reservoirs&from_year=&peer_reviewed=&published_between=&fromSearchResults=true&to_year=&rows=10#" alt="https://www.onepetro.org/conference-paper/SPE-62882-MS?sort=&start=0&q=material+balance+in+oil+reservoirs&from_year=&peer_reviewed=&published_between=&fromSearchResults=true&to_year=&rows=10#" title="https://www.onepetro.org/conference-paper/SPE-62882-MS?sort=&start=0&q=material+balance+in+oil+reservoirs&from_year=&peer_reviewed=&published_between=&fromSearchResults=true&to_year=&rows=10#">https://www.onepetro.org/conference-paper/SPE-62882-MS?sort=&start=0&q=material+balance+in+oil+reservoirs&from_year=&peer_reviewed=&published_between=&fromSearchResults=true&to_year=&rows=10#</a>

Use this section to provide links to relevant material on websites other than PetroWiki and OnePetro

Material balance in water drive reservoirs

Primary drive mechanisms

Oil fluid characteristics

Oil fluid properties

PEH:Oil_Reservoir_Primary_Drive_Mechanisms

- Главная
- Скачать мод на майнкрафт
- Скачать пк радио на андроид
- Том новая версия скачать на андроид
- Скачать бесплатно игры зимняя рыбалка
- Буквы и звуки игры онлайн
- Почему важно пить воду
- Скачать эквалайзер на андроид бесплатно
- Пропитка кожи пва
- Оладьи книга о вкусной и здоровой пище
- Скачать игру мортел комбат на телефон nokia asha 501
- Синяя колючка своими руками

Copyright © 2018 littlemp3.ru.